

STaRT-2012 SAMPLE TEST PAPER CLASS-XI (SC.-MATHS)

Time : 90 min.

Maximum Marks : 200

GENERAL INSTRUCTIONS

- 1. he question paper contains 50 questions, 15 questions from Physics (1-15), 10 questions from Chemistry (16-25), 15 Questions from Mathematics (26-40) and 10 questions from Mental Ability (41-50).
- 2. The OMR sheet given in the examination hall is the Answer Sheet.
- 3. Blank papers, clip boards, log tables, slide rule, calculators, mobile or any other electronic gadgets in any form is not allowed.
- 4. Do not forget to mention your roll number neatly and clearly in the blank space provided in the answer sheet.
- 5. Each Question carries 4 marks. '1' mark will be deduct for each wrong answer. So attempt each question carefully.
- 6. No rough sheets will be provided by the invigilators. All the rough work is to be done in the blank space provided in the question paper.
- 7. In case of any dispute, the answer filled in the OMR sheet available with the institute shall be final.

Name : _____

Roll No. : _____

Resonance Eduventures Pvt. Ltd.

Corporate Office: J-2, Jawahar Nagar Main, Kota (Rajasthan) - 324005, INDIA Tel.: +91-0744-3012222, 3192222, 2437144 | Fax: 022-39167222, 0744-2427144 Toll Free: 1800 200 2244 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

A block of mass 2 kg is given an initial velocity of 10 m/sec. on a rough horizontal ground. Due to the friction, the block comes to the rest after travelling 5m distance. What should be the constant friction force acting on the block?

(A) 10 N (B) 20 N

(C) 30 N

- 2. In the circuit shown, reading of the ammeter and the voltmeter are respectively :
 - (A) 0.1 amp., 3 volt
 (B) 0.1 amp., 1 volt
 (C) 0.3 amp., 3 volt
 (D) 0.3 amp., 1 volt

(D) 40 N

- A 100 gm bullet is fired in forward direction with a velocity of 100 m/sec. Due to this, the free gun of mass 2 kg (excluding bullet) rebounds in backward direction. Total kinetic energy produced in this process is :
 (A) 500 J
 (B) 25 J
 (C) 525 J
 (D) 475 J
- 4. The graph of pressure excess v/s distance (x) for a sound wave is shown above. If the speed of sound is 300 m/sec, the time period of the vibration in the sound wave is : Pressure excess

- A candle is used as an object and placed at a distance of 30 cm from a lens of power 5D (power may be positive or negative). At how much distance from the lens, should we place a screen, so that a sharp and inverted image of the candle can be formed :

 (A) 30 cm
 (B) 40 cm
 (C) 50 cm
 (D) 60 cm
- 6. A motorcycle is moving along the path shown with constant speed 60 km/h. It takes two minutes to move from point P to point Q. The total length of the path from P to Q will be :

(A) 2 km

(B) 3 km

(C) 4 km

(D) 5 km

7.	Suppose a positive charge is moving with a velocity \vec{v} in a magnetic										
	field \vec{B} , and experiences a magnetic force \vec{F} . According to the Fleming's										
	left hand rule, the fore-finger, the central finger and the thumb will										
	respectively point towal	rds :									
	(A) B, V and F		(^B) V,Band F								
	(C) \vec{F}, \vec{V} and \vec{B}		(D) None of these								
8.	Which of the following	objects will float in water :									
	(A) mass = 50 g and vo (C) mass = 40 g and vo	$plume = 20 \text{ cm}^3$	(B) mass = 200 g and volume = 500 cm^3								
	(C) mass = 40 g and ve										
9.	A cubical block is proj displacement 'x' when i be :	ected horizontally on a retrieved to	ough surface with speed v and it stops sliding after 2v, displacement of the block before it stops sliding with								
	(A) x	(B) 2x	(C) 4x	(D) 0.5 x							
10.	An electron enters a ma	gnetic field at right angles	to it, as shown in figure.	The direction of force acting on							
	the electron will be :										
			Magnatic field								
		Electron									
	(A) to the right	(B) to the left	(C) out of the page	(D) into the page							
11.	Which of the following lenses would you prefer to use while reading small letters found in a dictionary.										
	(A) A convex lens of for	the dictionary ?	(B) A concave lens of focal length 40 cm								
	(C) A convex lens of foc	cal length 5 cm	(D) A concave lens of focal length 5 cm								
12.	Equivalent resistance b	etween A and B is :		D							
			(R) R								
	(A) 2K		(B) 2 Ao-	NNR B							
	(C) $\frac{R}{3}$		(D) $\frac{3R}{2}$	R							
13.	Two particles P and Q	start from rest and mov	e for equal time on a s	traight line. Particle P has an							
	Acceleration of X m/s ² O has an acceleration	for the first half of the tot of 2 X m/s ² for the first	tal time and 2 X m/s ² for half of the total time an	the second half. The particle $d X m/s^2$ for the second half.							
	Which particle has cov	vered larger distance?									
	(A) both have covered	the same distance	(B) P has covered the	e larger distance							

14.	 The minimum work done to accelerate a block on a smooth horizontal surface from rest to speed v (A) is less than that required to accelerate if from v to 2v. (B) is equal than that required to accelerate it from v to 2v. (C) is more than that required to accelerate it from v to 2v. (D) may be any one of the above since it depends on the force acting on the truck and the distance over which it acts. 									
15.	Three resistance of value 1Ω , 2Ω and 3Ω are connected in parallel. If the effective resistance of the circulas has to be 1Ω , the value of the resistance to be connected in series to this circuit should be :									
	(A) $\frac{6}{11}$ Ω	(B) ⁵ / ₁₁ Ω	(C) $\frac{4}{11}\Omega$	(D) $\frac{3}{11}\Omega$						
16.	Which of following is re (A) $Ca(HCO_3)_2$	sponsible for temporary h (B) Na ₂ CO ₃	ardness of water ? (C) CaCO ₃	(D) MgSO ₄						
17.	A solution turns red litr (A) 1	nus blue, its pH is likely t (B) 4	o be : (C) 7	(D) 10						
18.	An atom which has a n (A) isomer of nitrogen	(B) isobar of oxygen	as 7 neutrons is an : (C) isotope of oxygen	(D) isobar of carbon						
19.	10 mL of a solution of NaOH is found to be completely neutralised by 8 mL of a given solution of HCl. If we take 20 mL of the same solution of NaOH, the amount of H_2SO_4 solution (having the same molarity as that of initial HCl solution) required to neutralise it will be :									
20.	 Choose the correct statement with regard to redox displacement reactions. (A) A less active metal displaces a more active metal. (B) A more active non-metal is displaced by a less active non metal. (C) A less active non-metal displaces hydrogen from dilute acids. (D) A more active metal displaces hydrogen from dilute acids. 									
21.	Element X forms a chloride with the formula XCl ₂ , which is a solid with a high melting point. X would most likely be in the same group of the Periodic Table as ? (A) Na (B) Ca (C) Al (D) Si									
22.	 Which of the following statements is not a correct statement about the trends when going from left to right across the periods of peridic Table - (A) The atoms generally become smaller in size. (B) The number of valence electrons increases. (C) The atoms lose their electrons more easily. (D) The oxides become more acidic. 									
23.	Consider the following $2H_2(g) + CO (g$ (A) Addition of $H_2 (g)$ we	equilibrium situation and $() \implies CH_3OH (g)$ build lead to increased pro	identify the correct statem duction of CH ₃ OH (g).	ient :						

(D) 18

(B) Addition of CH_3OH (g) would stimulate further consumption of CO (g). (C) Increasing pressure would lead to the production of H_2 (g). (D) Reducing the volume of the equilibrium will not disturb the equilibrium.

- 3 moles of an ideal gas occupices 100L under certain conditions. 1.5 moles of the gas is removed and the temperature of the gas is doubled keeping the pressure constant. What is the new volume of the gas ?
 (A) 50L
 (B) 200L
 (C) 400L
 (D) 100L
- **25.** Decomposition reaction of ammonia is given as $2NH_3 \rightarrow N_2 + 3H_2$. The concentration of NH_3 decreases to 40% in 10 min starting with 0.1mol/L. The average rate of decomposition of NH_3 in mol L⁻¹ min⁻¹ is : (A) 6×10^{-3} (B) 4×10^{-3} (C) 4×10^{-2} (D) 6×10^{-2}
- **26.** If x is a whole number, then $x^2(x^2 1)$ is always divisible by : (A) 12 (B) 24 (C) 12 - x
- 27. 'P + Q' means 'P is the brother of Q'. 'P Q means P is the mother of Q and 'P × Q' means 'P is the sister of Q'. Which of the following means that M is the maternal uncle of R ?
 (A) M R + K
 (B) M + K R
 (C) M + K × Q
 (D) M K + R
- A leak in the bottom of a fully filled water tank empties it in 6 hours. However the leak empties the fully filled water tank in 8 hours when a pipe is delivering water into the tank at the rate of 4 L/min. What is the capacity of the tank ?
 (A) 5,260 L
 (B) 5,760 L
 (C) 5,846 L
 (D) 6,670 L

29. A father's age is equal to the sum of the ages of his 3 children. In 9 years his age will be equal to the sum of the two eldest son's ages and 3 years after that his age will be equal to the sum of the ages of his eldest and youngest children. Again 3 years after that his age will be equal to the sum of the ages of his two youngest children. find the father's present age ?
(A) 32 years
(B) 36 years
(C) 40 years
(D) 44 years

30.	The number of roots c	of the equation x -	$-\frac{2}{(x-1)}=1$	$-\frac{2}{(x-1)}$ is :	
	(A) 0	(B) 1	(0	C) 2	(D) infinite

31. If $\frac{1}{3}\log_3 M + 3\log_3 N = 1 + \log_{0.008} 5$, then :

(A)
$$M^9 = \frac{9}{N}$$
 (B) $N^9 = \frac{9}{M}$ (C) $M^3 = \frac{3}{N}$ (D) $N^9 = \frac{3}{M}$

32.Angle between the minute hand of a clock and hour hand when the time is 7 : 20 am is :
(A) 80° (B) 100° (C) 120° (D) 90°

PAGE #5

An Initiative by Resonance Eduventure

onai

Educating for better tor

IIT-JEE | AIPMT | AIEEE | OLYMPIADS | KVPY | NTSE

33. If $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ and $x \sin \theta = y \cos \theta$ then : (A) $x^3 + y^3 = 1$ (B) $x^2 - y^2 = 1$ (C) $x^2 + y^2 = 1$ (D) $x^3 - y^3 = 1$ If $\frac{x}{y} = \frac{3}{4}$, then the incorrect expression of the following is 34. (A) $\frac{x+y}{y} = \frac{7}{4}$ (B) $\frac{y}{y-x} = \frac{4}{1}$ (C) $\frac{x+2y}{x} = \frac{11}{3}$ (D) $\frac{x-y}{y} = \frac{1}{4}$ 35. If f(a) = a - 2, $f(a, b) = b^2 + a$, then the value of f[3, f(4)] is (D) 8 (A) $a^2 - 4a + 7$ (B) 28 (C)7 36. If the ratio of the legs of a right triangle is 1:2, then the ratio of the corresponding segments of the hypotenuse made by a perpendicular upon it from the vertex is (B) 1: √2 (D) 1:√15 (A) 1:4 (C) 1:2 The sum of all the roots of $4x^3 - 8x^2 - 63x - 9 = 0$ is (A) 8 (B) 2 (C) -37. (C) - 8(D) - 2 The value of $\left(\frac{1}{16}\right)a^{0} + \left(\frac{1}{16a}\right)^{0} - 64^{-1/2} - (-32)^{-4/5}$ is 38. (A) $1\frac{13}{16}$ (B) $1\frac{3}{16}$ (C) $\frac{7}{8}$ (D) $\frac{1}{16}$ 39. If sinx = 3 cosx, then sinx cosx equals (A) 1/6 (B) 1/5 (C) 1/3 (D) 1/4 40. If X is a point on the line AB and Y, Z are points (not on the line) such that $\angle AXY = 45^{\circ}$ and $\angle YXZ = 60^{\circ}$, then ∠AXZ is equal to (A) 105° (B) 120° (C) 135° (D) 150° Directions : (41 to 43) Find the missing term : 41. 151, 158, 172, 182, ? (A) 210 (B*) 193 (C) 197 (D) 203 42. EIO, IOU, OUA, ? (A) UAD (B) UAK (C) UAL (D*) UAE

Directions : (44 to 45) Column I contains five capital letters while column II contains five digits. Each letter corresponds to a single digit but not necessarily in that order.

	स्तम्भ (column) l	स्तम्भ (column) ll		
	BEIKL	61520		
	PNBTK	34568		
	XLPBE	57401		
	KNIXV	27396		
	XBNPE	45713		
4.	What is the value of I	BIKE ?		
	(A*) 5261	(B) 6125	(C) 2560	(D) None of these
	、 ,	.,		
5.	What is the value of F	PIN + NIP ?		
	(A) 423	(B) 744	(C) 777	(D*) 747

In a row of girls, Rina and Mona occupy the ninth place from the right end and tenth place from the left end, respectively. If they interchanged their places, Rina and Mona occupy seventeenth place from the right and eighteenth place from the left, respectively. How many girls are there in the row ?

 (A) 25
 (B*) 26
 (C) 27
 (D) Data inadequate

47. At what time between 4 and 5 will be hands of clock be in opposite direction ?

(A) $53\frac{7}{11}$ min. past 4 (B) $21\frac{9}{11}$ min. past 4 (C*) $54\frac{6}{11}$ min. past 4 (D) $49\frac{1}{11}$ min. past 4

Directions : (48 to 49) Each of the following questions consists of five figures marked 1, 2, 3, 4 and 5. These figures form a series. Find out the one from the answer figures that will continue the series. Problem Figures

Problem Figures

Answer Figures

ESTPARER 50. On the basis of the following figures you have to tell which number will come in place of '?'

3 6 1	4 6	1 5		
(i)	(ii)	(iii)		
(A) 2	(B*) 3	}	(C) 6	(D) 4

		ANSWER																
1.	(B)	2.	(B)	3.	(C)	4.	(C)	Ę	5.	(D)	6.	(A)		7.	(A)	8.	(B)	
9.	(C)	10.	(D)	11.	(C)	12.	(C)	1	13.	(C)	14.	(A)		15.	(B)	16.	(A)	
17.	(D)	18.	(C)	19.	(B)	20.	(D)	2	21.	(B)	22.	(C)	:	23.	(A)	24.	(D)	
25.	(A)	26.	(A)	27.	(B)	28.	(B)	2	29.	(B)	30.	(A)	:	31.	(B)	32.	(B)	
33.	(C)	34.	(D)	35.	(C)	36.	(A)	3	37.	(B)	38.	(C)	;	39.	(D)	40.	(A)	
41.	(B)	42.	(D)	43.	(B)	44.	(A)	4	45.	(D)	46.	(B)		47.	(C)	48.	(D)	
49.	(D)	50.	(B)															